Deep Sequencing of Small RNAs in Tomato for Virus and Viroid Identification and Strain Differentiation

نویسندگان

  • Rugang Li
  • Shan Gao
  • Alvaro G. Hernandez
  • W. Patrick Wechter
  • Zhangjun Fei
  • Kai-Shu Ling
چکیده

Small RNAs (sRNA), including microRNAs (miRNA) and small interfering RNAs (siRNA), are produced abundantly in plants and animals and function in regulating gene expression or in defense against virus or viroid infection. Analysis of siRNA profiles upon virus infection in plant may allow for virus identification, strain differentiation, and de novo assembly of virus genomes. In the present study, four suspected virus-infected tomato samples collected in the U.S. and Mexico were used for sRNA library construction and deep sequencing. Each library generated between 5-7 million sRNA reads, of which more than 90% were from the tomato genome. Upon in-silico subtraction of the tomato sRNAs, the remaining highly enriched, virus-like siRNA pools were assembled with or without reference virus or viroid genomes. A complete genome was assembled for Potato spindle tuber viroid (PSTVd) using siRNA alone. In addition, a near complete virus genome (98%) also was assembled for Pepino mosaic virus (PepMV). A common mixed infection of two strains of PepMV (EU and US1), which shared 82% of genome nucleotide sequence identity, also could be differentially assembled into their respective genomes. Using de novo assembly, a novel potyvirus with less than 60% overall genome nucleotide sequence identity to other known viruses was discovered and its full genome sequence obtained. Taken together, these data suggest that the sRNA deep sequencing technology will likely become an efficient and powerful generic tool for virus identification in plants and animals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accumulation of viroid-specific small RNAs and increase in nucleolytic activities linked to viroid-caused pathogenesis.

Strong viroid-caused pathogenesis was achieved in tomato cv. Rutgers by biolistic transfer of severe or lethal potato spindle tuber viroid (PSTVd) strains, while other tomato genotypes (e.g., Moneymaker) were tolerant. With reciprocal hybrids between sensitive and tolerant genotypes, we show that plant depression dominates over tolerance. Biolistic transfer of the most pathogenic PSTVd strain A...

متن کامل

Parsing the Regulatory Network between Small RNAs and Target Genes in Ethylene Pathway in Tomato

Small RNAs are a class of short non-coding endogenous RNAs that play essential roles in many biological processes. Recent studies have reported that microRNAs (miRNAs) are also involved in ethylene signaling in plants. LeERF1 is one of the ethylene response factors (ERFs) in tomato that locates in the downstream of ethylene signal transduction pathway. To elucidate the intricate regulatory role...

متن کامل

Accumulation of Potato spindle tuber viroid-specific small RNAs is accompanied by specific changes in gene expression in two tomato cultivars.

To better understand the biogenesis of viroid-specific small RNAs and their possible role in disease induction, we have examined the accumulation of these small RNAs in potato spindle tuber viroid (PSTVd)-infected tomato plants. Large-scale sequence analysis of viroid-specific small RNAs revealed active production from the upper portion of the pathogenicity and central domains, two regions prev...

متن کامل

Phylogenetic analysis and genetic variation of Tomato yellow leaf curl virus based on the V1 gene in Iraq

Tomato yellow leaf curl virus (TYLCV) is a supreme pathogen in tropical and subtropical areas. During 2014-2015, a total of 393 tomato samples showing Tomato yellow leaf curl disease (TYLCD) symptoms were collected from six different provinces of Iraq. In serological assays, 55 out of 393 samples (14%) reacted positively with TYLCV-specific antibodies .The presence of TYLCV was verified in 21 (...

متن کامل

Discovery of Replicating Circular RNAs by RNA-Seq and Computational Algorithms

Replicating circular RNAs are independent plant pathogens known as viroids, or act to modulate the pathogenesis of plant and animal viruses as their satellite RNAs. The rate of discovery of these subviral pathogens was low over the past 40 years because the classical approaches are technical demanding and time-consuming. We previously described an approach for homology-independent discovery of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012